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ABSTRACT: In recent experimental work, it was found that the number of hydrogen
bonds in polymer mixtures is strongly influenced by chain-connectivity effects and the
spacing of functional groups along the chain. In this article, the relationships between
the equilibrium constants used to describe the number of hydrogen bonds in mixtures
of various types (blends, solutions, random copolymers, etc.) is elucidated and
described. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1273–1281, 1998
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INTRODUCTION

Most theories of polymer solutions and blends
deal with mixtures where the interactions be-
tween the molecules involve dispersion and rela-
tively weak polar forces only. Because at ordinary
temperatures such forces are much smaller than
thermal energy, RT, it has seemed reasonable to
assume a random mixing of molecules and, a
more subtle point, the segments of polymer
chains. In other words, the number of contacts
between chain segments in a blend or segment/
solvent contacts in a solution is assumed to be the
same as in a mixture where these segments are
“disconnected” and randomly mixed with solvent
molecules or the disconnected segments of an-
other chain. This gives rise to the usual fAfBx
interaction term in the Flory–Huggins theory,

where the fAfB term is proportional to the num-
ber of AB contacts in a random mixture of A/B
units.

Deviations from random mixing can occur for
various reasons: If the interaction energy favors
certain types of contacts over others, then one
might expect a higher proportion of such contacts.
Such deviations have often been handled using
Guggenheim’s quasi-chemical approximation,1

but calculations by Prigogine et al.2 demonstrated
that this model only allows small deviations from
random contacts. This is because the x term in
systems with weak interactions is positive and
unfavorable to mixing. As a result, even though
one would expect significant deviations from ran-
dom mixing as the interaction energy approaches
RT, phase separation occurs well before this
point. However, in systems where there is an
interaction component to the free energy that is
“strong” but favorable to mixing, such as those
that hydrogen bond, there should indeed be and
are non-random contacts; we will return to this
point shortly.

A second reason for deviations from random
contacts involves correlation or connectivity ef-
fects. It was pointed out by de Gennes3 that
within the radius of gyration defined by a given
chain there is a “correlation hole,” inside which
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the concentration of segments from other chains
is depleted. It follows that one would expect more
“like” contacts between polymer segments than
would be predicted on the basis of segmental ran-
dom mixing. Such intrachain contacts were in-
cluded to some degree in the original work of
Huggins4 and explicitly in complex contemporary
treatments, such as those due to Szleifer5 and
Schweizer and Curro.6 These latter approaches
do not readily lend themselves to the everyday
treatment of data; however, so in the “applied” or
“practical” sense, it would be of some value to
have a simple treatment that accounted for cor-
relation or connectivity effects. Similarly, to test
the validity and utility of this (and other) models,
it would be of considerable importance to develop
a technique that is capable of counting the num-
ber of contacts in blends and solutions. For a
particular type of interaction (hydrogen bonds),
such a technique is available (infrared spectros-
copy). The measurement of contacts is to some
degree limited, however, by various spectroscopic
factors, and the interpretation of the results is
complicated by the fact that we have deviations
from random contacts due to favorable energetic
factors superimposed upon connectivity or corre-
lation effects. Nevertheless, by carefully compar-
ing the number of hydrogen bonds in systems
containing the same types of functional groups,
but arranged in a different manner (e.g., blends
versus random copolymers of the same units),
considerable insight can and has been gained.
This systematic experimental work was pub-
lished in a series of articles.7–10 Here, our inten-
tion is to describe how these data can be treated
using a fairly simple approach. Although our fo-
cus is on hydrogen-bonded systems, the ramifica-
tions of this work are much broader. Some of
these ideas can be adapted to non-hydrogen-
bonded polymer solutions in order to explain the
observed composition dependence of the mea-
sured value of x, and they also open the possibility
of an experimental measurement of the Kuhn
segment length for certain types of polymer seg-
ments. These ideas will be explored in a separate
publication11 and future work.

THEORY

In the model that we developed to describe hydro-
gen-bonded systems12,13 and the treatment de-
scribed by Veytsman14 and Panayiotou and
Sanchez,15 it is assumed that weak interactions

can be treated separately from nonspecific inter-
actions, so that the partition function can be writ-
ten

Z 5 ZFHZH (1)

where the ZFH term describes the random mixing
of chains (not necessarily segments) and their
“physical” (nonhydrogen-bonded) interactions. As
mentioned above, we considered the effect of in-
trachain contacts on this term in a separate pub-
lication.11 The ZH term imposes the constraints
due to hydrogen bonding (including the fact that
there are more hydrogen-bonded contacts than
would be predicted on the basis of a random mix-
ing of segments). The ZH term can be written

ZH 5 O
h

Vh exp~ 2 Fh/kT! (2)

where h represents a certain distribution of hy-
drogen bonds and Fh is a free-energy term.

Our general points are most easily made by
considering a specific example, representing the
class of polymers that we have most often studied.
Such mixtures involve one component that self-
associates, such as poly(vinyl phenol), by which
we mean it hydrogen bonds to itself in the pure
state. The second component has only an acceptor
group, such as an ester, as in acrylate, methacry-
late, and acetate polymers. The types of hydrogen
bonds that occur in such mixtures are illustrated
in Figure 1. We represent phenol groups by the
letter B, and note that these hydrogen bond in the
form of chains, BOOBOOB, etc. For these
types of mixtures, we can write the hydrogen-
bonding partition function as

ZH 5 O
h

VO pBB
nBB

h

pAB
nAB

h

3 exp@2nBBfBB2nABfAB#/kT (3)

The VO term involves the combinatorics of dis-
tributing the hydrogen bonds between the func-
tional groups of the system, while pBB and pAB
are the probabilities that a B group is adjacent to
a chosen B group and the probability that an A
group is adjacent to a close B group ( pAB 5 1
2 pBB), respectively. These terms account for
the fact that segments or molecules must be next
to one another to hydrogen bond. Each term en-
ters the partition function nBB

h and nAB
h times,
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where nBB
h and nAB

h are the number of BB and BA
hydrogen bonds.

The formation of hydrogen bonds involves not
only the energy of the interaction, but also a loss
of rotational and translational degrees of freedom
of the segments or molecules involved, so the ex-
ponential term must be weighted by a free-energy
as opposed to just a simple energy term. However,
the energy and entropy changes associated with
each type of hydrogen-bond formation can be com-
bined into a single parameter, an equilibrium
constant, because from standard thermodynamics
we have

DgBB 5 2 RT ln KB (4)

DgAB 5 2 RT ln KA (5)

where g represents the Gibbs free-energy change
per hydrogen bond (essentially the same as the
Helmholtz free energy under the usual conditions
encountered in mixing polymers and solvents)
and KB and KA are the equilibrium constants
describing the formation of BB and AB hydrogen
bonds, respectively. The beauty of this approach
is that KB and KA can, in principle (there are
some experimental difficulties), be measured di-
rectly by infrared spectroscopy through equations
describing the stoichiometry of hydrogen bonding
(i.e., the relationships among KB, KA, nBB

h , nBA
h ,

and composition).12,13

The major difficulty is that for various reasons
we cannot measure the self-association constant

KB directly in polymers.13 (Actually, for OH
groups, we need two equilibrium constants to de-
scribe the self-association, but this does not affect
the general arguments that we are making here;
it simply makes the algebra a little more in-
volved.) In our previous work, we used a value
from low molecular weight analogs of the system
that we are considering (e.g., phenol), where KB

can be measured, and assume that the polymer
has the same value. This assumption is to some
degree wrong, but the error introduced is unim-
portant for most of the simple systems that we
have studied in previous work. We will return to
this point shortly, but given this assumed value of
KB, we then calculate a value of KA from the
experimentally observed fraction of A groups that
are involved in AB hydrogen bonds (this can be
readily measured by infrared spectroscopy) using
the stoichiometric equations.12,13 It is relatively
easy to show that it is the ratio KA/KB that is
most important in determining the number of BB
and AB hydrogen bonds, which, in turn, solely
determine the contribution of hydrogen bonding
to the free energy of mixing.12–15 For example,
Figure 2 shows the calculated fraction of BB and
AB hydrogen bonds for a system where KB 5 50
and KA 5 100. If both these values are doubled
or both halved, such that the ratio is the same,
the calculated fraction of bonded groups is
changed only a little, certainly within the error of
experimentally measuring these quantities.

Given a certain ratio of KA/KB, the contribu-
tion of hydrogen bonds to the free energy of mix-

Figure 1 Schematic representation of hydrogen bonding between like units (self-
association in poly(vinyl phenol): (left side) BOOB-type hydrogen bonds and unlike
units [poly(vinyl phenol)/poly(vinyl acetate)-type hydrogen bonds]; (right side) AOOB-
type hydrogen bonds).
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ing can be calculated for a wide range of homo-
polymer and copolymer blends. By assuming that
“physical” interactions can be determined from
solubility parameters, a wide range of phase be-
haviors has been successfully predicted12,13 for
certain types of homopolymer and copolymer
blends, principally those involving copolymers
with “inert” or nonhydrogen-bonding units (i.e.,
vinyl phenol/styrene copolymers). However, the
model starts to break down when we consider
copolymers containing different types of hydro-
gen-bonding functional groups. Furthermore, it is
unsatisfactory to leave the theory with what are
to some degree empirical parameters. It would be
far more satisfactory to have available “intrinsic”
equilibrium constants, characteristic of certain
types of functional groups, and then modify these
to account for connectivity or other effects. Even
more intriguing would be the possibility of exper-
imentally measuring such effects, because this
would allow us to “count” interchain and intra-
chain contacts in polymer systems (see below).
Accordingly, we need to develop a suitable model
to account for connectivity or intramolecular
screening effects in a simple and practical man-

ner. Unfortunately, there is an additional compli-
cation. In recent experimental work, we discov-
ered that there are also “spacing” effects, associ-
ated with changes in the degrees of freedom of
hydrogen-bonding functional groups relative to
one another when separated by “inert” (nonhydro-
gen bonding) copolymer units.10 However, these
two effects enter the partition function in differ-
ent ways: the first through the probability of units
being adjacent [the pBB and pAB terms in eq. (3)]
and the second through the free-energy weighting
terms ( fBB and fAB; hence, the entropy change
upon hydrogen bonding). We will discuss both and
start by considering connectivity effects.

Intramolecular Screening or Connectivity Effects

There are two factors that need to be considered
here: First, apart from the end groups, each seg-
ment of a polymer chain is covalently bonded to
two neighbors. This is handled in the surface site
fraction approach of Huggins4 and Guggenheim,1

where the number of contacts allowed to a chain
of (say) A units is defined by a factor qA, where

Figure 2 Calculation of the number of BB and AB hydrogen bonds in a system where
KB 5 50, KA 5 100, and the ratio KA/KB 5 2. The figure shows calculations for
KA/KB 5 1; KA/KB 3 0.5 (i.e., KB 5 25, KA 5 50) and KA/KB 3 2.
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qAz 5 z~MA 2 2! 1 2 (6)

where z is the lattice coordination number and
MA is the number of segments in the chain. Ne-
glecting other effects, the factors pBB and pAB
would then simply be given by

pAB 5 uA 5
NAqAz

NAqAz 1 NBqBz (7)

pBB 5 uB 5
NBqBz

NAqAz 1 NBqBz (8)

If MA and MB are both large, then uA < fA and uB
< fB. This is not so when there is a large mismatch
in the size of the molecules, as in polymer solutions,
unless the Flory approximation is made (z 3 `).
We will return to this point shortly.

We will now introduce intramolecular screen-
ing in a simple way. Essentially, we assume that
a chain bends back on itself, both through local
and long-range effects, as illustrated in Figure 3,
so that there is a far higher proportion of same
chain contacts than would be predicted on the
basis of a random mixing of segments. Simula-
tions of a polymer chain on a cubic lattice8 indi-
cate that for a melt the fraction of same chain
contacts, gs, is surprisingly large, of the order of
0.38 at high molecular weight, and has a molec-
ular weight dependence of the form

gs 5 a 2
b

M0.5 (9)

where a and b are constants. We would expect
this fraction to be smaller, but still significant, for
real systems (where presumably z . 6). Strong
experimental evidence supporting the proposition
that this effect is significant comes from a com-
parison of the number of “AB”-type hydrogen
bonds found in blends of poly(vinyl phenol) with
poly(ethyl methacrylate) relative to random co-
polymers of the same units.7,8 There are far more
AB (i.e., OH to carbonyl) hydrogen bonds in the
latter, where there is no distinction between the
probabilities of same-chain and interchain con-
tacts. In the blends, however, the phenolic OH
and methacrylate carbonyls “see” more units of
their own type because intramolecular screening
and, hence, gs are significant.

If we assume that in the concentrated regime,
where our experimental work is focused, there is
essentially no chain expansion (or collapse) upon
mixing, so that gs is an average that can be treated
as a constant over most of the composition range,
then the probability pBB of a B chain segment being
adjacent to another B segment is given by;

pBB 5 gs
B 1 ~1 2 gs

B!F ~1 2 gs
B!uB

~1 2 gs
B!uB 1 ~1 2 gs

A!uA
G
(10)

where the first term is simply the fraction of same
chain BOOB contacts. There are then (1 2 gs)
interchain contacts, and this is multiplied by the
factor in square brackets, which gives the fraction
of all interchain contacts that are also BB. Other
probabilities ( pAB 5 1 2 pBB) follow from this
in a simple manner.

In some preliminary work8 we have demon-
strated how this approach can be applied to a
blend of a copolymer with a homopolymer in the
approximation that gs

A < gs
B (i.e., the fraction of

same chain contacts is the same for the two dif-
ferent types of chains). This allowed a fit to the
measured fraction of hydrogen bonded groups in
certain copolymer blends that could not be ob-
tained under the old assumption of pBB , fB.8

In mixing two high molecular weight polymers
of approximately the same chain stiffness (i.e., gs

A

5 gs
B 5 g, uA < fA and uB < fB), equation 10

is reduced to a particularly simple form

pBB 5 g 1 ~1 2 g!fB (11)

However, things are not as simple in polymer
solutions. If we first assume that component B is

Figure 3 Illustration of intramolecular screening ef-
fects.
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a polymer while component A is a low molecular
weight analogue (as in mixtures of poly(vinyl phe-
nol) with ethyl isobutyrate, characterized in re-
cent experimental work,7 then equation 10 takes
the form;

pBB 5 gs 1 ~1 2 gs!F ~1 2 gs!uB

~1 2 gs!uB 1 uA
G (12)

where gs
B 5 gs and gs

A 5 0, because there is no
intramolecular screening effect in a “small” (non-
polymeric) molecule. If we note that, in general,

uB 5
NBqB

NAqA 1 NBqB
5

fB

MB
qB

fA

MA
qA 1

fB

MB
qB

(13)

and we define

qB

MB
5 1 2

2
ZS1 2

1
MB

D 5 1 2 gl
B (14)

qA

MA
5 1 2

2
ZS1 2

1
MA

D 5 1 2 gl
A (15)

then we obtain for polymer B/solvent A solutions

PBB 5 gs 1 ~1 2 gs!F 1 2 g

~1 2 gfB!G (16)

where

g 5 gl
B 1 ~1 2 gl

B! gs
B (17)

This latter definition gives only a minor sim-
plification here, but becomes more significant in
treating “physical” interactions in polymer solu-
tions.11

The second probability required in the parti-
tion function, pAB, is then

pAB 5 ~1 2 pBB! 5 ~1 2 gs!F gfA

~1 2 gfB!G (18)

When B is the low molecular weight unit and the
non-self-associating segments A are part of a
polymer chain, we have

pBB 5
fB

~1 2 gfA!
(19)

where g is now

g 5 gl
A 1 ~1 2 gl

A! gs
A (20)

It is important to note the distinction in the two
cases, because we always use the segment size of
the self-associating B unit to define the lattice cell
size in the partition function, rather than the size
of the solvent molecule, as in the usual Flory–
Huggins treatment.

The quantities pBB and pAB can now be intro-
duced into the partition function and used to de-
fine the equilibrium constants KA and KB that
serve to describe the stoichiometry of hydrogen
bonding. In our original work,12 we actually ob-
tained the stoichiometric equations using simple
mass balance considerations, where for the type
of system being considered here we can write

fB 5
fB1

~1 2 KBfB1!
F1 1

KAfA1

r G (21)

fA 5 fA1F1 1
KAfB1

~1 2 KBfB1!
G (22)

where r is the ratio of molar volumes, VA/VB,
while the quantities fA1

and fB1
are the volume

fractions of A and B segments that are “free” (i.e.,
have no hydrogen-bonded partners whatsoever).
The fraction of free carbonyl groups that are mea-
sured by infrared spectroscopy is simply fA1

/fA.
These equations implicitly assume that pBB

5 fB and pAB 5 fA. When these assumptions
no longer hold, because of connectivity (or other)
effects, it can be shown8 that we can still use the
same equations providing that we replace KA and
KB with parameters K̃A and K̃B, defined as

K̃A 5 KA

pAB

fA
(23)

K̃B 5 KB

pBB

fB
(24)

KA and KB can then be thought of as “intrinsic”
equilibrium constants, values that would be ob-
tained in the absence of connectivity effects (i.e.,
when pBB 3 fB and pAB 5 1 2 pBB 3 fA).

This finally brings us to the value of KA that we
actually measure and its relationship to such in-
herent or intrinsic equilibrium constants. As
mentioned above, we first assume a value of KB
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from measurements made on low molecular
weight compounds [for poly(vinyl phenol), we
have used phenol and ethyl phenol]. Let this
value be KB

L. We then calculate a value of KA, say
KA

calc, by fitting the stoichiometric eq. (21) and (22)
to (most often) data obtained over a range of com-
positions (taking care to be in a range where
experimental errors are a minimum). Because it
is the ratio KA/KB that is important in defining
this data over a very wide range, we have then

KA
calc

KB
L 5

K̃A

K̃B
5

KA

KB
FfB

fA

~1 2 pBB!

pBB
G (25)

This equation serves to establish the relation-
ship between “measured” and “actual” equilib-
rium constants. We can now substitute the values
of pAB and pBB obtained above for various situa-
tions (polymer blends, polymer solutions) and cal-
culate KA and KB. Our aim was to obtain such
“inherent” equilibrium constants. We will apply
these equations to interpret the results of exper-
imental solution work that is now in progress.

Spacing Effects

In recent experimental work,10 we found that the
equilibrium constant KA

calc describing the number
of “AB”-type hydrogen bonds (e.g., phenolic OH to
carbonyl) hydrogen bonds in poly(vinyl phenol)/
poly(vinyl acetate) blends is less than the value
found in copolymer blends where the vinyl phenol
and vinyl acetate units are “spaced” (i.e., sepa-
rated along the chain) with nonhydrogen-bonding
units (dimethylbutadiene and ethylene, respec-
tively). The incorporation of such units should not
affect the intramolecular screening factor de-
scribed in the preceding section, unless there is
chain expansion in the concentrated region where
our experimental studies were conducted, which
seems unlikely. We believe that there is a sepa-
rate effect at work here, related to the degrees of
freedom that are lost when a hydrogen bond is
formed. If we consider two small molecules A and
B that form a hydrogen bond, as illustrated sche-
matically in Figure 4, then clearly there are cer-
tain rotational and translational degrees of free-
dom that are lost, relative to the nonhydrogen-
bonded case. If these A and B units are now
incorporated into a polymer chain, there are now
internal degrees of freedom associated with bond
rotations that are lost, and these will be different
from those in nonpolymeric molecules of the same

type, as also illustrated in Figure 4. These factors
influence the equilibrium constants describing
hydrogen-bond formation directly, through the
entropy component of the free-energy change
upon hydrogen bonding (in contrast to “screen-
ing”, where the factors pBB and pAB are involved).
For the illustrative example that we are using
here, we can write (per mole)

KB 5 e 2 DhBB/RT eDsBB/R (26)

KA 5 e 2 DhAB/RT eDsAB/R (27)

where DhBB and DsBB are the enthalpy and en-
tropy changes, respectively, that occur upon form-
ing a BB hydrogen bond, etc. The frequency shifts
that occur in certain infrared absorption bands
are proportional to the enthalpy change, Dh, and
in the systems we have studied these shifts are
identical in polymer blends, random copolymers,
polymer solutions, and mixtures of small mole-
cule analogs.7–10 Accordingly, it is the entropy
change, Ds (negative because of the loss of de-
grees of freedom), that is important.

Now consider the case of homopolymers such as
poly(vinyl acetate) relative to a copolymer such as
ethylene-co-vinyl acetate, as illustrated in Figure 5.

Figure 4 Schematic illustration of loss of degrees of
freedom upon hydrogen bonding in (top) small mole-
cules and (bottom) polymers.
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In the homopolymer, one can envisage a situation
where a certain fraction of the vinyl acetate groups
are hydrogen-bonded. Because of the steric restric-
tions on backbone bond rotations, the ability of the
remaining nonbonded groups to form a hydrogen
bond will be limited, even if adjacent to (say) a vinyl
phenol segment, because they may not be able to
orient themselves appropriately relative to their
neighbors. The same argument holds for the vinyl
phenol segments. If we now “space” the hydrogen-
bonding functional groups with nonhydrogen-bond-
ing and relatively flexible units, such as ethylene or
dimethylbutadiene, then the ability of an acetate
group to rotate, relative to a neighboring acetate
group along the same chain, is increased. One can
envisage a limit where the acetate groups are sep-
arated by a Kuhn segment length of, for example,
ethylene units, such that they then become, in ef-
fect, freely hinged and rotating relative to their
acetate neighbors in the same chain. Clearly, in
such a chain of “spaced” units, the ability of groups
to hydrogen bond will be greater than in a chain
where there are greater restrictions on the rota-
tional freedom of functional groups relative to one
another.

In our initial experimental work,10 we found
that the measured equilibrium constant for AB
hydrogen bond formation, which we called KA

std,
and which again was calculated using the as-
sumed value KB

L defined above, varied with the
“spacing” in both vinyl phenol/dimethylbutadiene
and ethylene/vinyl acetate copolymer blends ac-
cording to an empirical equation of the form

KA
std 5 112 2 F 1630

VA 1 RA
1

4100
VB 1 RB

G (28)

where the value of 112 is the limiting value for
mixtures of “fully spaced” groups (i.e., low concen-
trations of hydrogen-bonding functional groups in
each of the copolymer chains), while RA and RB
are the molar volumes of the ethylene and dim-
ethylbutadiene spacer groups, respectively. The
quantities VA ( 5 70) and VB ( 5 100) are the
molar volumes of the vinyl acetate and vinyl phe-
nol segments. We previously advanced some pre-
liminary ideas, based on effective contacts, but
based on the rotational freedom factors described
above we can now propose a more detailed and
physically interesting model.

Consider the entropic contribution DsAB to the
equilibrium constant KA in eq. (27). This must have
two components, related to loss of degrees of free-
dom of A units when hydrogen-bonded to B units
and also loss of degrees of freedom of B units when
hydrogen-bonded to A’s. These quantities will vary
with the “spacing” or rotational freedom of A units
relative to one another in the same chain and, sim-
ilarly, the spacing of the B units (in their chains). If
we let the spacing of the A and B units in the
homopolymers [poly(vinyl acetate) and poly(vinyl
phenol) in the example used here] be la and lb, while
the corresponding spacing in the copolymers is La
and Lb, as illustrated in Figure 5, then we can
assume a relationship of the form

DsAB 5 sAB
` 1

la

La
Dsab 1

lb

Lb
Dsba (29)

where DsAB
` is the value of the entropy change

(from both A and B units) when the hydrogen-
bonding functional groups are spaced such that
they are effectively “freely hinged” with respect to
one another. As the spacing is reduced, there are
additional restrictions placed on the groups upon
hydrogen bonding, because their rotational free-
dom is limited by the orientation of their neigh-
boring groups. We assume that as we remove
spacing groups there is an additional loss of en-
tropy per unit length upon hydrogen bonding:
Dsab for the A units (when hydrogen-bonded to a
B) and Dsba for the B units (when hydrogen
bonded to an A). Note that all the Ds quantities in
this equation are negative and we have assumed
linear increases in entropy per spacer group re-
moved. As DsAB gets larger (more negative, i.e.,
as spacing is decreased), the value of the equilib-

Figure 5 Definition of “spacing” distances in copoly-
mers. The qualities la and lb correspond to the distance
(along the chain contour) between hydrogen-bonding
functional groups in the homopolymers, while La and
Lb are the corresponding distances between groups in
the copolymers.
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rium constant will get smaller, as experimentally
observed. The limit in eq. (29) (DsAB

` ) should ac-
tually be reached as La and Lb approach the
Kuhn segment lengths, but as long as these val-
ues are large relative to la and lb (the spacing in
the homopolymers), then this equation is a rea-
sonable approximation. It is now possible to ob-
tain an equation of the same form as that ob-
tained by an empirical fit to experimental data
[eq. (28)]. We first rewrite eq. (29):

DsAB 5 DsAB
` 2

la

La
|Dsab

| 2
lb

Lb
|Dsba

| (30)

then

KA
std 5 e 2 DhAB/RT eDsAB

` /R e 2 la/La |Dsab
| /R e 2 lb/Lb |Dsba

| /R

5 KA
`@e 2 la/La |Dsab

| /R e 2 lb/Lb |Dsba
| /R# (31)

Expanding the exponentials in a series and trun-
cating after the first terms, we have

KA
std 5 KA

`F1 2
la

La

|Dsab
|

R 2
lb

Lb

|Dsab
|

R G (32)

This equation is of exactly the same form as
that found empirically in experimental work [eq.
(28), see ref. 10], the only difference being the
replacement of a ratio of molar volumes of the
repeat units with a ratio of length parameters
(la/La and lb/Lb). Furthermore, using eq. (28), it

can be shown that the last two terms in brackets
are of the order of 0.2 3 0.4, so that to a first
approximation it would seem reasonable to ne-
glect higher-order and cross-terms in the expan-
sion of terms in eq. (31). Equation (32) provides a
good fit to the experimental data as shown in
Figure 6, where we have made the assumption
that the ratio of length parameters La/la can be
approximated by the corresponding ratio of molar
volumes of the units. The apparent relationship of
the spacing parameter to the Kuhn segment
length of the spacing units is an intriguing one
that we will explore in future work.
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